
"delegating generator"

val = yield from gen()

.throw()
exceptions

yield 42
return 84

raise StopIteration(84)

stop_iter_exc.value

Cancel each other,
essentially returned
value of downstram

generator becomes value
of "yield from" expression

function

val = next(gen_yield_from())

generator

yield from gen_yield_from()

"yield from" establishes
a transparent bidirectional

channel for values between delegating
generator's upstream caller

(can be func or gen) and
downstream generator (argument
of "yield from"). Note that current

iterator does not see any
values yielded by downstream

generator - again, they are
transparently piped upstream.

The channel also works in
downstream direction for
exceptions (as injected

by .throw()).

While delegating generator does
not see values passed thru it and

"almost" does not see exceptions, it
very well sees return value of

downstream generator - it becomes
value of "yield from" expression.

Note that there's some underlying
magic involved with processing
generator return value, but you

can ignore it:

Summing up:

val = yield from func()

behaves just as

val = func()

In particular, it is *synchronous* call, returning all data in one big chunk at the end. The only
difference of "yield from" is that it allows communication of downstream async code (data
producers/consumers) with upstream async code (scheduler) transparently thru your func().

def pump(ins, outs):
for chunk in gen(ins):
yield from outs.write(chunk)

def gen(ins):
yield ""
yield from ins.read_in_chunks(1000*1000*1000)
yield ""

Upstream caller of yield-from generator can
be either normal function (which then should
use iterator protocol (next()/for) or generator

(which then should use yield from).

1

2

Note to people not familiar with generators: By a definition, a generator is a function which uses yield or yield from. Text below always uses term "generator"
to refer to such functions to be formally correct. But don't let that confuse you: generators are first of all just functions, like the ones you always used.

Note that as "yield from" establishes a transparent channel, there can be any number
of "yield from" generators in a chain.

How Python 3.3 "yield from" construct works

yield values

.send() values

except

raised
exceptions

Yes, you guessed it - magic
unicorn pipe does not have any

provisions for transporting
ascending exceptions. Why is so?
One obvious answer is that it is
natural direction of exception

propagation, already governed
by Python semantics. In particular,

exceptions will be transparently
passed from downstream generator

to upstream caller if delegating
generator does not use try/except

blocks. Or if except clause does not
match exception raised. But with

appropriate except clause,
delegating iterator can easily

intercept downstream exceptions,
breaking free exception flow
between downstream and

upstream.

So, everything seems logical.
But still, Greg, Guido, why?

Why not let magic pipe do nice
symetrical magic instead of

black tangled exception-ridden
magic? The biggest concern is

that this inconsistency precludes
easy optimization of "yield from"

chains, and optimization now
needs to be more complicated
and timid. Was that the reason

why Greg's "somewhat
optimizing" patches did not make
it to the releases, and "yield from"

implementation in CPython 3.3&3.4
is non-optimized at all?

3

4

"caller"

downstream generator
("iterator" in arbitrary case)

5

It's not enough to use only "yield from" to write well-behaving async apps. Read it again: when
you write something like:

data = yield from sock.read(1000*1000*1000)
return "" + data + ""

- you are writing horrendous synchronous blocking code.

To write truly async code, one must use yield - sensibly.
Rough example:

Note to Python language laweyrs who read PEP380: this diagram tries to use terminilogy consistent with PEP380, but a bit more self-describing, avoiding
(implied) "hereafter called XXX". So, "upstream caller" is what PEP calls "caller", "delegating generator" is used just the same, and "downstream generator"
corresponds to "iterator" (yes, to keep things manageable and focused, the diagram considers a case when downstream is a generator, which is the case
interesting to the most people).

As Python uses duck typing, a downstream object can be something else than a generator:
1) It can be conventional iterable (e.g. a list). This is an easy case, it just yields values, does
not use more advanced features like .send() or .throw().
2) Arbitrary object which implements __next__(), send(), throw(), close() methods (or their
subset). In this case, these methods will be called as if it was a generator.

7

9

8

6

(c) 2014 Paul Sokolovsky
Dedicated to MicroPython,
http://micropython.org

